基础知识
当前位置:首页 > 公文写作 > 基础知识 > 列表页

光纤基础知识

小草范文网  发布于:2017-05-04  分类: 基础知识 手机版

篇一:光纤基础知识

1、第一根光纤是什么时候出现的?其损耗是多少?

答:第一根光纤大约是1950年出现的。传输损耗高达1000dB/km左右。

2、试述光纤通信系统的组成及各部分的关系。

答:光纤通信系统主要由光发送机、光纤光缆、中继器和光接收机组成。

系统中光发送机将电信号转换为光信号,并将生成的光信号注入光纤光缆,调制过的光信号经过光纤长途传输后送入光接收机,光接收机将光纤送来的光信号还原成原始的电信号,完成信号的传送。中继器就是用于长途传输时延长光信号的传输距离。

3、光纤通信有哪些优缺点?

答:光纤通信具有容量大,损耗低、中继距离长,抗电磁干扰能力强,保密性能好,体积小、重量轻,节省有色金属和原材料等优点;但它也有抗拉强度低,连接困难,怕水等缺点。

1.光纤是由哪几部分组成的?各部分有何作用?

答:光纤是由折射率较高的纤芯、折射率较低的包层和外面的涂覆层组成的。纤芯和包层是为满足导光的要求;涂覆层的作用是保护光纤不受水汽的侵蚀和机械擦伤,同时增加光纤的柔韧性。

4.简述光纤的导光原理。

答:光纤之所以能够导光就是利用纤芯折射率略高于包层折射率的特点,使落于数值孔径角)内的光线都能收集在光纤中,并在芯包边界以内形成全反射,从而将光线限制在光纤中传播。

7.均匀光纤纤芯和包层的折射率分别为n1=1.50,n2=1.45,光纤的长度L=10Km。试求:(1)光纤的相对折射率差Δ;(2)数值孔径NA;(3)若将光纤的包层和涂敷层去掉,求裸光纤的NA和相对折射率差Δ。

解:(1)?=n1-n2

2n12221.52?1.452 ? ?3.3% 2?1.52

(2)NA?n12??1.5?2?0.033 ? 0.39

2(3)若将光纤的包层和涂敷层去掉,则相当于包层的折射率n2=1,则

?=n1-n2

2n1221.52?12 ? ?28.1% 22?1.5

NA?n12??1.?52?0.2 ?8 11.1 2

O而NA?sin?0 最大为1,所以说只要光纤端面的入射角在90以内,就可以在光纤中形成全反射。

8.已知阶跃型光纤,纤芯折射率n1=1.50,相对折射率差Δ=0.5%,工作波长λ0=1.31μm,试求:(1)保证光纤单模传输时,光纤的纤芯半径a应为多大?

(2)若a=5μm,保证光纤单模传输时,n2应如何选择?

解:(1)因为是阶跃型光纤,所以归一化截止频率Vc=2.405;

? V?

2??0n1a2??2.405 ?2.4051.31?m? a??0???3.34??m?2?n12?2?1.50?2?0.5%2.405

(2)若a=5μm,保证光纤单模传输时,

V?2?

?0n1a2??2.405

????2?2.405?0??na?2????1

?=n1-n2

2n1222?2.4051.31?m?????1.50?5?m2?????2?0.22% ?0.22% ?

n2?n1?2??1.5??2?0.22%?1.4967

1.简述石英系光纤损耗产生的原因,光纤损耗的理论极限值是由什么决定的?

答:(1)

本征吸收

吸收损耗

光纤损耗 散射损耗 弯曲损耗 紫外吸收 红外吸收 -氢氧根(OH)吸收 杂质吸收 过渡金属离子吸收 (2)光纤损耗的理论极限值是由紫外吸收损耗、红外吸收损耗和瑞利散射决定的。

2.当光在一段长为10km光纤中传输时,输出端的光功率减小至输入端光功率的一半。

求:光纤的损耗系数α。

解:设输入端光功率为P1,输出端的光功率为P2。

则P1=2P2

光纤的损耗系数?=2P10P110lg?lg2?0.3?dB/km? LP210kmP2

3.光纤色散产生的原因有哪些?对数字光纤通信系统有何危害?

答:(1)按照色散产生的原因,光纤的色散主要分为:模式(模间)色散、材料色散、波导色散和极化色散。(2)在数字光纤通信系统中,色散会引起光脉冲展宽,严重时前后脉冲将相互重叠,形成码间干扰,增加误码率,影响了光纤的传输带宽。因此,色散会限制光纤通信系统的传输容量和中继距离。

4.为什么单模光纤的带宽比多模光纤的带宽大得多?

答:光纤的带宽特性是在频域中的表现形式,而色散特性是在时域中的表现形式,即色散越大,带宽越窄。由于光纤中存在着模式色散、材料色散、波导色散和极化色散四种,并且模式色散>>材料色散>波导色散>极化色散。由于极化色散很小,一般忽略不计。在多模光纤中,主要存在模式色散、材料色散和波导色散;单模光纤中不存在模式色散,而只存在材料色散和波导色散。因此,多模光纤的色散比单模光纤的色散大得多,也就是单模光纤的带宽比多模光纤宽得多。

5.均匀光纤纤芯和包层的折射率分别为n1=1.50,n2=1.45,光纤的长度L=10km。试求:

(1)子午光线的最大时延差;

(2)若将光纤的包层和涂敷层去掉,求子午光线的最大时延差。

解:(1)?M?L

Csin?cn1??LLn1?n1????1??CC?n2?n1

?10km?1.50?1.50??1??1.72??s??3?105km?1.45?

(2)若将光纤的包层和涂敷层去掉,则n2=1.0

?M?LLn1?n1?????1???CCC?n2?sin?cn1n1L

?10km?1.50?1.50??1??25??s??3?105km?1.0?

6.一制造长度为2km的阶跃型多模光纤,纤芯和包层的折射率分别为n1=1.47,n2=1.45,使用工作波长为

1.31μm,光源的谱线宽度Δλ=3nm,材料色散系数Dm=6ps/nm·km,波导色散τw=0,光纤的带宽距离指数γ=0.8。试求:

(1)光纤的总色散;

(2)总带宽和单位公里带宽。

解:(1)?M?2km?1.47?1.47?Ln1?n1???1???1??135.2?ns? ?5??C?n2?3?10km/s?1.45?

?Dm????L?6ps/nm?km?3nm?2km?36?ps??m

?总?M2?(?m??w)2 ?.22?0.0362?135.2?ns?

(2)BT

?0.441? ?0.441?3.26?MHz? 135.2ns B?BT?L? ?3.26?20.8?5.68?MH?z

7.一制造长度为2km的抛物线型渐变多模光纤,纤芯轴线处的折射率n(0)=1.5,包层的折射率nC=1.48,使用工作波长为0.85μm,光源的谱线宽度Δλ=6nm,材料色散系数Dm=15ps/nm·km,波导色散τ=10 ps,光纤的带宽距离指数γ=0.9。试求:

(1)光纤的总色散;

(2)总带宽和单位公里带宽。

解:(1)?=wn?0?-nc22

2n021.52?1.482? ?1.34% 22?1.5

?M1Ln(0)212km?1.5?0.01342??????898?ps? 52C23?10km/s

?m?Dm????L?15ps/nm?km?6nm?2km?180?ps?

?总?M2?(?m??w)2 ?2?180?102?918?ps?

(2)BT?0.4410.441 ??480?MHz? ?918ps

B?BT?L? ?480?20.9?896?MHz?

8.某系统使用工作波长λ0=1.31μm,谱线宽度Δλ=5nm的光源和长度为3km的阶跃型光纤,其纤芯的折射率n1=1.458,相对折射率差Δ=0.8%,纤芯半径a=8μm,光纤的材料色散系数Dm=8ps/nm·km,波导色散τw=0,其带宽速率比为0.8。试求光纤的模式畸变带宽和波长色散带宽。

解: ?M?

?Ln13km?1.458????0.8%?116.7?ns? 5C3?10km/s0.441 BM??0.441 ?3.78?MHz? 116.7ns

Bc?0.4410.441? ?3.68?GHz? Dm????L8ps/nm?km?5nm?3km

1、比较LED和LD,并说明各自适应的工作范围。

答:LED的发射光功率比LD要小,不适合长距离系统;LED的光谱宽度比LD大得多,不适合长距离系统;LED的调制带宽比LD小得多,不适合长距离系统;LED的温度特性比LD好得多。所以,LED适应于短距离小容量光纤通信系统,而LD适应于长距离大容量光纤通信系统。

2、试说明LED的工作原理。

答:当给LED外加合适的正向电压时,Pp结之间的势垒(相对于空穴)和Np结之间的势垒(相对于电子)降低,大量的空穴和电子分别从P区扩散到p区和从N区扩散到p区(由于双异质结构,p区中外来的电子和空穴不会分别扩散到P区和N区),在有源区形成粒子数反转分布状态,最终克服受激吸收及其它衰减而产生自发辐射的光输出。

3、试说明LD的工作原理。

答:当给LD外加适当的正向电压时,由于有源区粒子数的反转分布而首先发生自发辐射现象,那些传播方向与谐振腔高反射率界面垂直的自发辐射光子会在有源层内部边传播、边发生受激辐射放大(其余自发辐射光子均被衰减掉),直至传播到高反射率界面由被反射回有源层,再次向另一个方向传播受激辐射放大。如此反复,直到放大作用足以克服有源层和高反射率界面的损耗后,就会向高反射率界面外面输出激光。

9、光发送机主要由哪些部分组成?各部分的作用是什么?

答:光发送机主要由光源、驱动电路及辅助电路等构成。驱动电路的主要作用是为光源提供要求的驱动电流;光源的主要作用是完成电光变换(光调制);辅助电路主要完成自动功率控制、自动温度控制及光源保护等功能。

10、光调制方式有哪些?目前的数字光纤通信系统采用的是数字调制方式?还是模拟调制方式?

答:光调制方式主要按照光源与调制信号的关系及已调制信号的性质两种方式分类。根据光源与调制信号的关系,可以将光源的调制方式分为直接调制方式和外部(或间接)调制方式;根据已调制信号的性质,可以将光源的调制方式分为模拟调制方式和数字调制方式。从调制的本质上来说,目前的数字光纤通信系统采用的是模拟调制方式。

4、简述PINPD的工作原理。

答:当光照射到PIN光电二极管的光敏面上时,会在整个耗尽区及耗尽区附近产生受激辐射现象,从而产生电子空穴对。在外加电场作用下,这种光生载流子运动到电极。当外部电路闭合时,就会在外部电路中

有电流流过,从而完成光电的变换过程。

5、在APD中,一般雪崩倍增作用只能发生于哪个区域?

答:高场区(即雪崩倍增区)。

6、简述APD的工作原理。

答:当光照射到APD的光敏面上时,由于受激吸收而在器件内产生出一次电子空穴对。在外加电场作用下,一次电子空穴对运动到高场区,经过反复的碰撞电离过程而形成雪崩倍增现象,从而产生出大量的二次电子空穴对。在外加电场的作用下,一次电子空穴对和二次电子空穴对一起运动到电极。当外部电路闭合时,就会在外部电路中有电流流过,从而完成光电变换过程。

12、试画出光接收机的方框组成,并说明各部分的作用。

答:

直接功率检测方式原理组成

光电检测器的主要作用是将接收的光信号变换成包括基本调制信号分量的电信号;前置放大器的主要作用是低噪声接收;功率放大器(又称为主放大器)主要作用是信号幅度放大到适合再生的电信号;均衡滤波器作用是低通滤波和将信号波形变换成无码间干扰的信号波形;再生器的作用是将接收的信号恢复成标准数字信号;AGC电路主要作用是稳定光接收机输出的信号幅度;高压变换器是为APD提供合适的电压(同时通过调整平均倍增因子大小,来进一步稳定光接收机的输出信号幅度)。

13、光接收机有哪些主要指标?它们的定义是什么?

答:光纤通信系统主要包括光接收机灵敏度和光接收机动态范围两个指标。

所谓光接收机灵敏度,是指在一定误码率或信噪比(有时还要加上信号波形失真量)条件下光接收机需要接收的最小平均光功率。而光接收机动态范围,是指在一定误码率或信噪比(有时还要加上信号波形失真量)条件下光接收机允许的光信号平均光功率的变化范围。

18、影响光接收机灵敏度的主要因素有哪些?

答:输入和输出信号波形、非理想均衡滤波、直流光和背景光和判决阈值等。

1、简述掺杂光纤放大器的放大原理。

答:在泵浦源的作用下,掺杂光纤中的工作物质粒子由低能级跃迁到高能级,得到了粒子数反转分布,从而具有光放大作用。当工作频带范围内的信号光输入时,信号光就会得到放大,这就是掺杂光纤放大器的基本工作原理。只是掺杂光纤放大器细长的纤形结构使得有源区能量密度很高,光与物质的作用区很长,有利于降低对泵浦源功率的要求。

2、EDFA有光纤通信中哪些应用?

答:EDFA在光纤通信中可以作用(1)光功率放大器;(2)光前置放大器;(3)光线路放大器;(4)本地网光放大器

3、EDFA有哪些泵浦方式?答:(1)同向泵浦;(2)反向泵浦;(3)双向泵浦

5、波分复用的主要特点有哪些?

答:波分复用技术的主要特点有:可以充分利用光纤的巨大带宽潜力,使一根光纤上的传输容量比单波长传输增加几十至上万倍。在大容量长途传输时可以节约大量的光纤。波分复用通道对传输信号是完全透明的,可同时提供多种协议业务,不受限制地提供端到端业务。可扩展性好。降低器件的超高速要求。

6、波分复用系统可以分为哪些类型?

答:WDM系统从不同的角度可以分为不同的类型:从传输方向分,可以分为双纤单向波分复用系统和单纤双向波分复用系统;从光接口类型分,可以分为集成式波分复用系统和开放式波分复用系统。

篇二:光纤基本知识

第一部分 光纤理论与光纤结构

一、光及其特性:

1.光是一种电磁波

可见光部分波长范围是:390~760nm(毫微米)。大于760nm部分是红外光,小于390nm部分是紫外光。光纤中应用的是:850,1300,1550三种。

2.光的折射,反射和全反射。

因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。而且,折射光的角度会随入射光的角度变化而变化。当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。光纤通讯就是基于以上原理而形成的。

二、光纤结构及种类:

1.光纤结构:

光纤裸纤一般分为三层:中心高折射率玻璃芯(芯径一般为50或62.5μm),中 间为低折射率硅玻璃包层(直径一般为125μm),最外是加强用的树脂涂层。

2.数值孔径:

入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。这个角度就称为光纤的数值孔径。光纤的数值孔径大些对于光纤的对接是有利的。不同厂家生产的光纤的数值孔径不同(AT&TCORNING)。

3.光纤的种类:

A.按光在光纤中的传输模式可分为:单摸光纤和多模光纤。

多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

B.按最佳传输频率窗口分:常规型单模光纤和色散位移型单模光纤。

常规型:光纤生产厂家将光纤传输频率最佳化在单一波长的光上,如1300nm。色散位移型:光纤生产长家将光纤传输频率最佳化在两个波长的光上,如:1300nm和1550nm。

C.按折射率分布情况分:突变型和渐变型光纤。

突变型:光纤中心芯到玻璃包层的折射率是突变的。其成本低,模间色散高。适用于短途低速通讯,如:工控。但单模光纤由于模间色散很小,所以单模光纤都采用突变型。渐变型光纤:光纤中心芯到玻璃包层的折射率是逐渐变小,可使高模光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多

为渐变型光纤。

4.常用光纤规格:

单模:8/125μm,9/125μm,10/125μm

多模:50/125μm,欧洲标准

62.5/125μm,美国标准

工业,医疗和低速网络:100/140μm,200/230μm

塑料:98/1000μm,用于汽车控制

三、光纤制造与衰减:

1.光纤制造:

现在光纤制造方法主要有:管内CVD(化学汽相沉积)法,棒内CVD法,PCVD(等离子体化学汽相沉积)法和VAD(轴向汽相沉积)法。

2.光纤的衰减:

造成光纤衰减的主要因素有:本征,弯曲,挤压,杂质,不均匀和对接等。本征:是光纤的固有损耗,包括:瑞利散射,固有吸收等。

弯曲:光纤弯曲时部分光纤内的光会因散射而损失掉,造成的损耗。

挤压:光纤受到挤压时产生微小的弯曲而造成的损耗。

杂质:光纤内杂质吸收和散射在光纤中传播的光,造成的损失。

不均匀:光纤材料的折射率不均匀造成的损耗。

对接:光纤对接时产生的损耗,如:不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。

四、光纤的优点:

1.光纤的通频带很宽.理论可达30亿兆赫兹。

2.无中继段长.几十到100多公里,铜线只有几百米。

3.不受电磁场和电磁辐射的影响。

4.重量轻,体积小。例如:通2万1千话路的900对双绞线,其直径为3英寸,重量8吨/KM。而通讯量为其十倍的光缆,直径为0.5英寸,重量450P/KM。

5.光纤通讯不带电,使用安全可用于易燃,易暴场所。

6.使用环境温度范围宽。

7.化学腐蚀,使用寿命长。

第二部分 光缆

一、光缆的制造:

光缆的制造过程一般分以下几个过程:

1.光纤的筛选:选择传输特性优良和张力合格的光纤。

2.光纤的染色:应用标准的全色谱来标识,要求高温不退色不迁移。

3.二次挤塑:选用高弹性模量,低线胀系数的塑料挤塑成一定尺寸的管子,将光纤纳入并填入防潮防水的凝胶,最后存放几天(不少于两天)。

4.光缆绞合:将数根挤塑好的光纤与加强单元绞合在一起。

5.挤光缆外护套:在绞合的光缆外加一层护套。

二、光缆的种类:

1.按敷设方式分有:自承重架空光缆,管道光缆,铠装地埋光缆和海底光缆。

2.按光缆结构分有:束管式光缆,层绞式光缆,紧抱式光缆,带式光缆,非金属光缆和可分支光缆。

3.按用途分有:长途通讯用光缆、短途室外光缆、混合光缆和建筑物内用光缆。

三、光缆的施工:

多年来,做光缆施工使得我们已有了一套成熟的方法和经验。

(一)光缆的户外施工:

较长距离的光缆敷设最重要的是选择一条合适的路径。这里不一定最短的路径就是最好的,还要注意土地的使用权,架设的或地埋的可能性等。

必须要有很完备的设计和施工图纸,以便施工和今后检查方便可靠。施工中要时时注意不要使光缆受到重压或被坚硬的物体扎伤。

光缆转弯时,其转弯半径要大于光缆自身直径的20倍。

1.户外架空光缆施工:

A.吊线托挂架空方式,这种方式简单便宜,我国应用最广泛,但挂钩加挂、整理较费时。

B.吊线缠绕式架空方式,这种方式较稳固,维护工作少。但需要专门的缠扎机。

C.自承重式架空方式,对线干要求高,施工、维护难度大,造价高,国内目前很少采用。

D.架空时,光缆引上线干处须加导引装置,并避免光缆拖地。光缆牵引时注意减小摩擦力。每个干上要余留一段用于伸缩的光缆。

E.要注意光缆中金属物体的可靠接地。特别是在山区、高电压电网区和多地区一般要每公里有3个接地点,甚至选用非金属光缆。

2.户外管道光缆施工:

A.施工前应核对管道占用情况,清洗、安放塑料子管,同时放入牵引线。

B.计算好布放长度,一定要有足够的预留长度。详见下表:

C.一次布放长度不要太长(一般2KM),布线时应从中间开始向两边牵引。

D.布缆牵引力一般不大于120kg,而且应牵引光缆的加强心部分,并作好光缆头部的防水加强处理。

E.光缆引入和引出处须加顺引装置,不可直接拖地。

D.管道光缆也要注意可靠接地。

3.直接地埋光缆的敷设:

A.直埋光缆沟深度要按标准进行挖掘,标准见下表:

B.不能挖沟的地方可以架空或钻孔预埋管道敷设。

C.沟底应保正平缓坚固,需要时可预填一部分沙子、水泥或支撑物。

D.敷设时可用人工或机械牵引,但要注意导向和润滑。

E.敷设完成后,应尽快回土覆盖并夯实。

4.建筑物内光缆的敷设:

A.垂直敷设时,应特别注意光缆的承重问题,一般每两层要将光缆固定一次。

B.光缆穿墙或穿楼层时,要加带护口的保护用塑料管,并且要用阻燃的填充物将管子填满。

C.在建筑物内也可以预先敷设一定量的塑料管道,待以后要敷射光缆时再用牵引或真空法布光缆。

四、光缆的选用:

光缆的选用除了根据光纤芯数和光纤种类以外,还要根据光缆的使用环境来选择光缆的外护套。

1.户外用光缆直埋时 ,宜选用铠装光缆。架空时,可选用带两根或多根加强筋的黑色塑料外护套的光缆。

2.建筑物内用的光缆在选用时应注意其阻燃、毒和烟的特性。一般在管道中或强制通风处可选用阻燃但有烟的类型(Plenum),暴露的环境中应选用阻燃、无毒和无烟 的类型(Riser)。

3.楼内垂直布缆时,可选用层绞式光缆(Distribution Cables);水平布线时,可选用可分支光缆(Breakout Cables)。

4.传输距离在2km以内的,可选择多模光缆,超过2km可用中继或选用单模光缆。 直埋光缆埋深标准

第三部分 连接和检测

一、光缆的连接:

方法主要有永久性连接、应急连接、活动连接。

1.永久性光纤连接(又叫热熔):

这种连接是用放电的方法将连根光纤的连接点熔化并连接在一起。一般用在长途接续、永久或半永久固定连接。其主要特点是连接衰减在所有的连接方法中最低,典型值为0.01~0.03dB/点。但连接时,需要专用设备(熔接机)和专业人员进行操作,而且 连接点也需要专用容器保护起来。

2.应急连接(又叫)冷熔:

应急连接主要是用机械和化学的方法,将两根光纤固定并粘接在一起。这种方法的主要特点是连接迅速可靠,连接典型衰减为0.1~0.3dB/点。但连接点长期使用会不稳定,衰减也会大幅度增加,所以只能短时间内应急用。

3.活动连接:

活动连接是利用各种光纤连接器件(插头和插座),将站点与站点或站点与光缆连接起来的一种方法。这种方法灵活、简单、方便、可靠,多用在建筑物内的计算机网络布线中。其典型衰减为1dB/接头。

二、光纤检测:

光纤检测的主要目的是保证系统连接的质量,减少故障因素以及故障时找出光纤的故障点。检测方法很多,主要分为人工简易测量和精密仪器测量。

1.人工简易测量:

这种方法一般用于快速检测光纤的通断和施工时用来分辨所做的光纤。它是用一个简易光源从光纤的一端打入可见光,从另一端观察哪一根发光来实现。这种方法虽然简便,但它不能定量测量光纤的衰减和光纤的断点。

2.精密仪器测量:

使用光功率计或光时域反射图示仪(OTDR)对光纤进行定量测量,可测出光纤的衰减和接头的衰减,甚至可测出光纤的断点位置。这种测量可用来定量分析光纤网络出现故障的原因和对光纤网络产品进行评价。

第四部分 光纤的应用及系统设计

一、光纤的应用:

人类社会现在已发展到了信息社会,声音、图象和数据等信息的交流量非常大。以前的通讯手段已经不能满足现在的要求,而光纤通讯以其信息容量大、保密性好、重量轻体积小、无中继段距离长等优点得到广泛应用。其应用领域遍及通讯、交通、工业、医疗、教育、航空航天和计算机等行业,并正在向更广更深的层次发展。光及光纤的应用正给人类的生活带来深刻的影响与变革。

二、光纤网络系统设计:

光纤系统的设计一般遵循以下步骤:

1.首先弄清所要设计的是什么样的网络,其现状如何,为什么要用光纤。

2.根据实际情况选择合适是光纤网络设备、光缆、跳线及连接用的其它物品。选用时应以可用为基础,然后再依据性能、价格、服务、产地和品牌来确定。

3.按客户的要求和网络类型确定线路的路由,并绘制布线图。

4.路线较长时则需要核算系统的衰减余量,核算可按下面公式进行:

衰减余量=发射光功率-接受灵敏度-线路衰减-连接衰减(dB)其中线路衰减=光缆长度×单位衰减;

单位衰减与光纤质量有很大关系,一般单模为0.4~0.5dB/km;多模为2~4dB/km。

连接衰减包括熔接衰减接头衰减,熔接衰减与熔接手段和人员的素质有关,一般热熔为0.01~0.3dB/点;冷熔0.1~0.3dB/点;接头衰减与接头的质量有很大关系,一般为1dB/点。系统衰减余量一般不少于4dB。

5.核算不合格时,应视情况修改设计,然后再核算。这种情况有时可能会反复几次。

三、设计实例:

1.某校园网的改造:

根据其情况,在已有细缆网的一边使用一台三口中继器(双绞线-光纤-细缆),另一边使用一台带光纤主干的双绞线HUB。中间用架空或地埋匀可的束管式4芯室外多模光缆再经过熔接为带ST头的室内跳线(因设备的光纤接口为ST型)。

衰减核算:(一般多模设备在2km范围内不用核算,这里只做个例子

发射功率:-16dBm

接收灵敏度:-29.5dBm

篇三:光缆基础知识

光缆Q&A

1.1 什么是光缆

用适当的材料和缆结构,对通信光纤进行收容保护,使光纤免受机械和环境的影响和损害,适应不同场合使用。

1.2 影响光纤性能和寿命的因素 A) 应力:导致光纤断裂或衰减增加

B) 水和潮气:使光纤易于断裂(变脆),影响寿命

C)氢气(压):光纤在一定具有压力的氢气作用下,光纤衰减曲线会在1240nm处产生突变的吸收峰,使1310nm及1550nm波长处的衰减明显增加。

1.3 光缆设计的基本原则

针对光纤的弱点,光缆设计应遵循以下原则:

A)为光纤提供机械保护,使光纤在各种环境下免受应力; B)必须防止水分和潮气侵入;

C) 必须避免光缆中产生氢气,尤其避免形成氢压。

1.4 光缆的基本性能

包括:光缆中的光纤传输特性、光缆的机械特性、光缆的环境特性和光缆的电气特性

1.5 光缆机械性能的实现

A)加强芯——主要抗拉元件

B)套管——将光纤外界隔绝,提供最基本的保护 C)余长控制——二套及成缆

D)金属带纵包——防潮、防水、抗侧压、抗冲击 E)护套——抗侧压、抗冲击、抗弯曲

1.6 光缆的防潮措施

A)径向防水——纤膏及缆膏填充、金属带纵包、PE护套

B)轴向防水——纤膏及缆膏填充、阻水环、阻水带、阻水纱、单根加强芯

1.7 光缆避免形成氢压的措施 A)氢气源于光缆材料

B)严格挑选材料,控制材料析氢量,控制不同材料间的反应析氢 C)特别是金属件的析氢控制(镀锌钢丝加强芯的禁用)

1.8 光缆的分类

A) 按光纤在光缆中的状态分:紧结构、松结构、半松半紧结构 B) 按缆芯结构分:中心管式、层绞式、骨架式 C) 按光缆敷设条件分:架空、管道、直埋和水底光缆 D) 按光缆使用环境场合分:室外光缆、室内光缆

1.9 光缆的相关标准 A) 国际标准

IEC60794(IEC-International Electrotechnical Commission) ITU-T K.25(ITU-International Telecommunications Union)

IEEE P1222(IEEE- Institute of Electrical and Electronics Engineers) B) 国内标准

国家标准GB/T 7424.1-1998 行业标准 YD/T

1.10 光缆的寿命

光缆的寿命主要由两方面决定:一是光缆所使用的材料寿命,另一是光缆中光纤的寿命。光缆材料寿命包括,光缆所使用各种材料本身寿命和它们之间之间相互作用对寿命的影响。光缆中光纤寿命,则主要由光纤在其服务期间所受到的应力(应变)确定。

光缆生产工艺及设备 (10)

2.1 光缆生产的主要工序

依次为光纤着色、二次套塑、缆芯绞合、护层、测试和包装。

2.2 长飞公司的主要光缆设备种类及数量

名称 着色机 二次套塑机 SZ绞合线 护套线

120头纺伦丝铠装机 带状光缆生产线 成带机

2.3 光纤着色工艺

长飞公司的光纤着色采用紫外光固化油墨,其基本成分为:丙烯酸盐+光固化剂+颜料,着色厚度为3~5μm。

2.4 二次套塑工艺

二次套塑就是选用合适的高分子材料(PBTP,聚对苯二甲酸丁二醇酯),采用挤塑方法,在合理的工艺条件下,给光纤套上一个合适的与光纤长度相等的松套管,并同时在松套管中注入触变型纤膏。松套管(相对于光纤的)余长范围为:±0.2%

2.5 缆芯绞合工艺

将多根松套管或填充绳按一定的绞合节距绞合在加强芯周围,并填充缆膏,主要目的在于: A) 增加光缆的可弯曲度

B) 提高光缆的抗拉能力,改善光缆的温度特性

2.6 护层工艺

按照光缆的使用环境,在缆芯外加上不同的保护层,以便对光纤进行更好的保护;包括:金属带(钢带、铝带)纵包,内护套及外护套。护层作为光缆抵御外界各种特殊复杂环境的作用的保护层必须具有优良的机械性能、环境性能、化学性能。护套材料主要采用MDPE(中密度聚乙烯)。 2.7 生产中光缆测试项目

型号 芬兰OFC-50 芬兰OFC-40 芬兰OFC-70 芬兰OFC-90 美国TPC公司 日本住友 日本住友

数量 6 7 4 10 1 1 1

用途 光纤着色 生产光纤套管 绞合套管 光缆护套

生产ADSS纺纶铠装 生产骨架式带状光缆 生产光纤带

在着色、二套、成缆、护层工艺后均作光纤衰减(1310nm和1550nm)测试,G.655光纤在入库前加测每根光纤的PMD。

2.8 不同PE护套材料的比较

LDPE:低密聚乙烯,柔顺性和延伸性较好;

HDPE:高密聚乙烯,较好的刚性、韧性以及较大的抗张强度,而且模量大,耐磨性好; LLDPE:线性低密聚乙烯,性能介于LDPE和HDPE之间,兼有LDPE的柔韧性和HDPE的优良的抗张强度;

MDPE:中密聚乙烯,较好的耐环境应力开裂性、刚性、耐热性和耐低温性,但熔体粘度高,加工性能差。

2.9 喷字和印字的比较

印字是利用印模将色带压到缆皮上,会在缆皮上形成微小压痕,但不会对光缆性能产生影响;喷字是将颜料用喷码机喷到缆皮表面,不会破坏缆皮。因此,从耐磨的角度来看,印字要优于喷字。一般(本文来自:wwW.xIAocAofaNwEn.com 小 草范 文 网:光纤基础知识)情况下,印字多用于室外光缆(PE缆皮),喷字多用于室内光缆(PVC缆皮)。

2.10 无卤阻燃护套材料

无卤阻燃护套料是无毒无烟的洁净阻燃材料,遇火燃烧时,护套料中添加的无机阻燃剂Al(OH)3、Mg(OH)2在燃烧时会释放出结晶水,吸收大量热量,抑制燃烧护套料的温度上升,从而阻止燃烧。

四、松套层绞光缆

4.1 套管色谱(新标准)

A) 国标全色谱:蓝\橙\绿\棕\灰\白\红\黑\黄\紫\粉红\水绿

B) 领示色谱:红绿填充绳或套管的领示色谱(F/T领示色谱)为长飞的标准领示色谱,其

具体规定见下面:

a. 若缆内有两根或两根

以上的填充绳时,采

取红绿填充绳领示,

套管全为本色,除了红管

领色的填充绳外,其

余的填充绳也全为本色。

自然管

自然管

逆时针排列 红管

(14)

绿管 自然管

自然管

b. 若缆内只有一根填充

绳时,采取一根红色A端(Red封头) 填充绳和一根绿色套

管领示,除了领色的绿套管外,其余的套管全为本色。

B端(绿色封头)

c. 若缆内没有填充绳时,采取红绿套管领示,除了领色的红绿套管外,其余的套管全

为本色。

4.2套管内光纤的排列(新标准)

A)国标全色谱套管内光纤的排列:一般以国标全色谱套管排列顺序(蓝\橙\绿\棕\灰\白\红\黑\黄\紫\粉\水绿)先排6纤/管(ф2.1MM套管)或12纤/管(ф2.6MM套管),后排先排4纤/管(ф2.1MM套管)或10纤/管(ф2.6MM套管); B)领示色谱套管内光纤的排列:F/T领示色谱套管内光纤的排列一般以红绿本色为顺序,先排6纤/管(ф2.1MM套管)或12纤/管(ф2.6MM套管),后排先排4纤/管(ф2.1MM套管)或10纤/管(ф2.6MM套管)。

4.3套管和填充绳的排列(新标准)

A)国标全色谱套管排列:蓝\橙\绿\棕\灰\白\红\黑\黄\紫\粉\水绿套管和可能有的本色填充绳按顺时针方向排列为A端;反之为B端;

B)F/T领示色谱排列:以红色的填充绳或套管、绿色的填充绳或套管、大芯数的本色套管、小芯数的本色套管和本色填充绳为顺序,按顺时针方向排列为A端。反之为B端。

4.4 普通松套层绞光缆的护套厚度(新标准)

本文已影响