文化论文
当前位置:首页 > 论文范文 > 文化论文 > 列表页

圆中的数学文化论文

小草范文网  发布于:2017-01-10  分类: 文化论文 手机版

篇一:数学文化论文

浅谈数学史与数学文化

一、情深意浓——学习数学的心得和感想

从小就对数学有着浓厚的兴趣,数学能给我带来一直奇妙的神奇的感觉,而学习数学更是让我学到很多东西。在思维上,逻辑的严谨,和思考的妙趣,是其他学科不能给我的。在求学的态度上,数学教给我的是脚踏实地。对数学的感觉有时不能用语言来描述,我相信很多和我一样喜欢数学的都对数学有着奇妙的感情。当同学表示学数学的枯燥时我很不能理解,在我看来数学是最实在,有趣味的,他就像是一个老朋友,等着去解读。

汉克尔曾说数学科学的特点是:高度的抽象性,体系的严谨性,应用的广泛性,发展的延续性。我懂得数学的高深,想来我没有足够的能力去深入的解读去体味,因而高考没有选数学专业。现在又有一次机会让我可以接触数学,领悟数学和数学家的神奇,美妙,毫不犹豫的选了数学文化,对数学的很多感受现在可以通过这次机会表达一二。

二、智慧展现——数学方法和数学思想

数学方法和数学思想将数学的智慧和魅力展现得淋漓尽致,这些凝聚了数学家们智慧的知识不是几句话就能说明白。数学的方法是贯穿了整个数学,也是学习数学的基础。在此我将我所学到的和我心中所想的一些数学方法和思想写出略表我对数学的解读。

数学的很多方法是有辩证性的,比如具体与抽象;演绎与归纳;发现与证明;分析与综合;这些方法之间有联系又有区别。

(一)、具体与抽象

具体是社会实践,是客观存在的东西,因为数学是源于社会实践的。同时数学是一种利用自身已有的概念、定理、公设,借助已知的相互关系,通过推理、计算而获得新发现的学科。数学的概念是抽象的,数学的方法也是抽象的。爱因斯坦相对论的发现恰恰是借助于数学的方法论路径去实现的,如果没有非欧几何人类可能还要在牛顿的时空观中走过许多年才能寻找到相对论。数学方法的抽象是借助数学概念、公理、定理、公设等,把所有涉及研究对象的概念以及研究对象的抽象性归并汇集在一起,找出他们更具体抽象、统一的结论。现在,数学研究的对象已不是具体、特殊的对象,而是抽象的数学结构。

(二)、演绎与归纳

演绎法是由一般到特殊的推理,它有三段论的表现形式,由一般的判断,特殊判断,结论三部分组成。归纳与演绎不同,归纳是这样一种推理:其中所得到的结论超越了经验材料所提供的东西的一种经验猜想。看起来归纳与演绎很有区别的,事实归纳与演绎是相依而存、互为发展、对立统一的。

(三)、发

圆中的数学文化论文

现与证明

发现实际上就是定律的发现和理论地提出问题,最主要是通过假说,猜想。猜想是提出新思想,一个猜想可以带出或生出一个新的学科方向。比如,对欧氏第五公设的证明产生了非欧几何理论,四色猜想对开辟数学研究新途径有重要意义。在数学史上有很多有名猜想,人们熟悉的费马猜想,曾是一个悬赏10万马克的定理,实际上,它是源于几千年前的勾股定理。得沃尔夫奖。

(四)、分析与综合

分析是由未知去推导已知,在假定的前提下导出结论,而这一结论恰恰是已给出的条件或已知的命题。综合是由已知命题开始,通过演绎、归纳能一连串来导出未有的命题,或解决所要给出的问题的解。

善于结合运用这些数学方法可以更好的来解决数学问题和体会数学的内涵。

三、成长与磨砺——数学的发展

写关于数学文化不得不写数学的发展。数学是人类最古老的科学知识之一,它主要是研究现实生活中数与数、形与形,以及数与形之间相互关系的一门学科。他们发展也经历的很多的坎坷,在磨砺中他也得以不断的成长。

首先是数学的萌芽阶段,在这一时代的杰出代表是古巴比伦数学、中国数学、埃及数学、印度数学等。古埃及文化可追溯到公元前4000年,在那里,公元前3200年就已有了统一的国家。公元前2900年,开始建筑金字塔,就金字塔的建筑来讲,已经具备一些初等几何的知识;巴比伦文化可以上溯到公元前2000年左右的苏美尔文化,这一时期,人们基于对量的认识,经建立了数的概念。从大约公元前1800年开始,巴比伦已经使用较为系统的以60为基数的数系;另一个重要的是古希腊数学,希腊文化在世界文明史上的贡献是至高无上的。它广泛的吸取了其他文明中的有价值的东西,创立了自己的文明与文化,对西方文明乃至世界文明的发展起了重要作用;同时,在中亚和东方也创造了灿烂的数学文化。自公元前8世纪起,印度已有一些丰富的数学知识。中国数学是世界数学史中的瑰宝,在仰韶文化中,已经出土的陶器上已刻有用 |,||,|||,||||等表示1,2,3,4的记号。西安半坡出土的陶器中就有用圆点堆成的三角形或正多边形。

然后是常数学阶段,这时期,数位希腊数学家取得辉煌成就,在2000年时间内,希腊人创造的文明一直延续到牛顿时代。M.克莱因在评价希腊人的《几何原本》和《圆锥曲线》时说:“从这些精心撰述的著作中,我们看得出此前三百年间数学上的创造性工作,或此后数学史上关系重大的一些问题。”说道希腊时代的辉煌,不得不提到希腊璀璨的数学家们。毕达哥拉斯,曾被人们认为是一个神秘主义者,据说他“十分之一是天才,十分之九是纯粹的呓语者。”他把证明引入了数学,这也是他最伟大的功绩之一。毕达哥拉斯还提出了抽象,抽象引发了几何的思辨,从实物的数与形,抽象到数学上的数与形,本身就把数学推向科学的开始。在希腊数学时期还有芝诺的四个简单悖论,这四个简单悖论震惊了哲学界。在希腊数学里最主要的工作精华和最大的光荣落在了欧几里德和阿波罗尼奥斯的头上。欧几里德撰写的《几何原本》是古希腊数学的集大成,它充分发挥了希腊哲学的优势,借助演绎推理,展现给人们一个完整的典范的学科系统。它从定义、公设、公理,一步一步,由远及近,由表及里地推证出大量丰富的结果。阿波罗尼奥斯的突出工作是《圆锥曲线论》,《圆锥曲线论》的杰出工作,几乎将圆锥曲线的所有性质开采殆尽,以至使后代许多几何学工作者至少是在笛卡尔之前的近2000年间,不敢对此再有发言权。后人提到评价圆锥曲线,评价阿波罗尼奥斯,就联想到我国李白登黄鹤楼时,看到崔颢诗后的“眼前有景道不得,崔颢题诗在上头”的那样一种心情。还有阿基米德的得意之作《论球与圆柱》,也是数学上的杰作。与此同时,在东方是中国,这一时期也是数学文化最辉煌的时代,它与希腊的数学文化呈现出一种交相辉映的繁荣局面。中国著作《九章算术》给出了三元一次方程组的解法,同时在世界历史上第一次使用负数,叙述了对负数进行运算的规则,也给出了求平方根和立方根的方法。

然后就进入了变量数学建立时期,有笛卡尔著作《几何学》,以及牛顿和莱布尼兹创立的微积分,这些都推进了数学的进步,在数学发展史上是很重要的一个里程碑。在大一的时候就学了微积分,微分及其中的变量、函数和极限等概念,运动、变化等思想,是辩证法渗入了全部数学:并使数学成为精确表述自然科学和技术的规律及有效地解决问题的有力工具。

最后是现代数学时期,其中比较突出的问题是高于四次的代数方程的根式求解问题、欧几里德几何中平行线公设的证明问题和微积分方法的逻辑基础问题。代数、几何、分析领域中这些问题得以研究和解决,数学学科的分支得以迅速发展。

顺着时间的发展将数学史大概说了下,现在我想特意说说在数学史上出现的三次数学危机。

第一次数学危机:由毕达哥拉斯提出的著名命题“万物皆数”和“一切数均可表成整数或整数之比”。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。

第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。

罗素悖论与第三次数学危机:十九世纪下半叶,康托尔创立了著名的集合论, 1903年,英国数学家罗素提出著名的罗素悖论。罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动,引起的巨大反响则导致了第三次数学危机。

四、数学韵味——数学的美

说到数学美 ,人们自然会联想到令人心驰神往的优美而和谐的黄金分割;雄伟壮丽的科学宫殿的欧几里得平面几何;数学皇冠上的明珠“哥德巴赫猜想”……

数学美可以分为形式美和内在美。

数学中的公式、定理、图形等所呈现出来的简单、整齐以及对称的美是形式美的体现。数学中有字符美和构图美还有对称美,数学中的对称美反映的是自然界的和谐性,在几何形体中,最典型的就是轴对称图形。数学中的简洁美,数学具有形式简洁、有序、规整和高度统一的特点,许多纷繁复杂的现象,可以归纳为简单的数学公式。

总之,数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的,数学是一个五彩缤纷的美的世界。

五、华丽外套——数学语言

语言是文化的载体和外壳。数学的一种文化表现形式,就是把数学溶入语言之中。数学语言是数学特有的形式化的符号体系,依靠这种语言进行思维,能够使思维在可见的形式下再现出来。数学语言包括文字语言、符号语言和图形语言。文字语言包括日常生活的语言,还有数学的特殊语言,各种名词、术语。

在生活中,数学语言处处存在。“不管三七二十一”涉及乘法口诀,“三下二除五就把它解决了”则是算盘口诀。

篇二:关于圆的数学小论文

数学小论文之探索“圆”

圆,是一个看来简单,实际上是十分奇妙的图形。古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。可以说在很久以前,人们就有了对圆的认识与利用。

在以前,不同的人对圆有不同的说法。古代埃及人就认

为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得给圆下定义要早100年。

通过先辈的不断研究与探索,现在,我们对圆有了更深

的了解。圆是一种几何图形。其定义为:在同一平面内,到定点的距离等于定长的点的集合叫做圆。同圆内圆的半径长度永远相同,圆有无数条半径。同时,圆又是“正无限多边形”,而“无限”只是一个概念,所以,世界上没有真正的圆。当多边形的边数越多时,其形状、周长、面积就都越接近于圆(这也是为什么人们所谓的圆只是正多边形)。所以,圆实际上只是概念性的图形。

在现实生活中,我们到处都能发现圆。在交通不断发达

的今天,各种各样的交通工具为我们的出行带来了便利:如

自行车、汽车、公交车??它们的轮子都是同一个形状,都

是圆形。但你们是否想过为什么用圆形结构来制作轮子呢?

我们先看看画的圆。外面的圆圈叫圆周,画圆圈时圆规

扎的一点,叫圆心。拿一根尺子量一量圆周上任何一点到圆

心的距离,它们都是相等的。这相等的距离,叫做半径。这

就是圆的重要性质。古往今来,人们把车轮做成圆形的,就

是根据圆的这个性质如果把车轮做成圆形。车辆在平坦的路

面上行驶时,车轮与地面上的任意一条直线都是相切的。由

圆的切线定义和性质可知,当车轮向前滚动时,轮子的中心

(圆心)与地面的垂直距离总是不变的,这个距离就是圆的半

径,也就是车轮辐条的长度(不考虑轮胎的大小)。把车厢装

在经过轮子中心的车轴上,当车辆在平坦的路面上行驶时,

车身能保持在一定的水平位置上,因此安装在车轴上的车

厢,车厢里坐的人,都将平稳地被车子拉着走,人坐在车厢

里也感觉非常舒服。假设这车轮子是个破的,已经不成圆形

了,轮缘上高一块低一块的,也就是说从轮缘到轮子圆心的

距离都不相等,那么这种车子走起来,一定要把你的头颠昏。

车轮做成圆的,当然也还有别的原因,例如:当一样东西在

地上滚动的时候,要比在地面上拖着走省劲多了,这是因为

滚动摩擦阻力比滑动摩擦阻力小的缘故。

说到这里,我心里又有了一个疑问,除了圆之外还有其

他图形可以当做轮子使用吗?正三角形、正方形、椭圆?好

像这些都不符合 “当车轮向前滚动时,轮子的中心与地面

的垂直距离总是不变的”这个性质。经过大量资料的搜寻,

其中有一个图形让我感到很特殊,那就是勒洛三角形。

这种神奇的三角形,就是以19世纪德国工程师勒洛的

名字命名的勒洛三角形。这种三角形常出现在制造业中,无

数奇怪或者常用的东西,按照它的样子被造出来。

以等边三角形每个顶点为圆心,以边长为半径,在另两

个顶点间作一段弧,三段弧围成的曲边三角形就是

(reuleaux triangle ),也称鲁洛三角形。

定宽性,是勒洛三角形典型的一种特性。几何上的理解

是:将一个圆放在两条平行线中间,使之与这两平行线相切。

则可以做到:无论这个圆如何运动,它还是在这两条平行线

内,并且始终与这两条平行线相切。把三个等半径的圆重合

起来,两两互相经过圆心,三个圆相交的部分就是勒洛三角

形,或者其发现者所称的“曲边三角形”。使用截面是定宽

曲线的滚木来搬运东西,不会发生上下抖动。实际上这样的装置在许多科技馆都能看到,下图就是柏林一家博物馆内的定宽曲线滚木。另外定宽曲线还有一个有趣的性质,就是宽度相等的定宽曲线有相同的周长,所以下图中的圆形滚木转过一周的时候,旁边的勒洛三角形滚木也恰好转过一周。

事实上,勒洛三角形虽然有定宽性,但作为车轮的结构

还是有一些欠缺。若将它制成车轮,将它的中心当做车轮转动的轴心,车子行驶时,轮子每转一圈车体就会有三次抖动,你会感觉有些颠簸,所以圆才是制作车轮的最佳结构。

(部分资料选自百度百科)

篇三:《数学文化论文》

本科生《数学文化》选修课程论文

与中外数学文化的差异数学文化的思考

学 院: 理学院

专 业:化学工程与工艺

姓 名:Zen Ting

学 号:

联系电话:

电子邮箱: dzd1005@gmai.com

指导教师: 布 和

教师职称: 讲 师

论文完成日期:二零一二年十二月一日

摘 要

数学在人类发展史上有着举足轻重的作用,扮演着重要的角色,可以毫不夸张的说,没有数学这门科学,人类的历史就无法展开,它不仅在学术层面上重要,更是对我们绚丽多彩的文化起着重大的作用。本文将回顾数学的发展史,浅谈数学对文化的作用,以及中外数学文化的差异。

关 键 词:阿基里斯追龟论 飞箭静止论《算术》希腊数学文化 中国数学代表

引 言

数学文化哲学作为一门学科或一个研究方向,是将数学置于人类文化大背景下而对其进行哲学反思。从数学哲学转向数学文化哲学是在数学文化背景下的必然选择。数学文化哲学不仅涵盖了对于数学本质及其价值更为深入的认识,而且从一个更为广泛的角度指明了影响数学发展的各个因素,因此是对传统数学哲学的深化和拓展。数学文化哲学的孕育和产生有着深刻的学术背景和社会因素。这种转向有助于使数学哲学走出现在的困境,更为重要的是,还将大大拓宽数学哲学研究的视野,从而为数学哲学的发展开辟更为广阔的前景。

正 文

首先我们来回顾布和老师课上讲得第一个方面,即数学的发展。

古代数学最重要的两个分支就是古希腊和古代中国。古希腊文明是人类古代文明中的一个皇冠,而数学则是这皇冠上最大的那一颗钻石,向世人展示了希腊人的精神——好奇多思,渴求知识。其哲学与数学的发展则达到了那一时期的顶峰。公元480年以后鸭店称为希腊的文化,政治中心,各种学术思想开始在雅典争奇斗艳,古希腊数学家更是层出不穷,艾丽娅学派的芝若提出了四个著名的悖论(二分说,追龟说,飞箭静止说,运动场说)迫使哲学家和数学家开始思考极限的问题。

我依稀记得我接触最早的,也是使我对数学产生兴趣并选修这门课的原因,就是因为追龟说——阿基里斯永远跑不过乌龟,和飞箭静止说。下面我将详述这两个事列,阐述数学问题中极限对人类文化精神上带来的冲击与思考。

1.1追龟说

阿基里斯是古希腊神话中善跑的英雄。在他和乌龟的竞赛中,他速度为乌龟十倍,乌龟在前面100米跑,他在后面追,但他不可能追上乌龟。因为在竞赛中,追者首先必须到达被追者的出发点,当阿基里斯追到100米时,乌龟已经又向前爬了10米,于是,一个新的起点产生了;阿基里斯必须继续追,而当他追到乌龟爬的这10米时,乌龟又已经向前爬了1米,阿基里斯只能再追向那个1米。就这样,乌龟会制造出无穷个起点,它总能在起点与自己之间制造出一个距离,不管这个距离有多小,但只要乌龟不停地奋力向前爬,阿基里斯就永远也追不上乌龟,“乌龟” 动得最慢的物体不会被动得最快的物体追上。由于追赶者首先

应该达到被追者出发之点,此时被追者已经往前走了一段距离。因此被追者总是在追赶者前面。

我们看看这个故事的历史背景。当时柏拉图描述,芝诺说这样的悖论,是兴之所至的小玩笑。首先,巴门尼德编出这个悖论,用来嘲笑"数学派"所代表的毕达哥拉斯的" 1-0.999...>0"思想。然后,他又用这个悖论,嘲笑他的学生芝诺的"1-0.999...=0, 但1-0.999...>0"思想。最后,芝诺用这个悖论,反过来嘲笑巴门尼德的"1-0.999...=0, 或1-0.999...>0"思想。有人解释道:若慢跑者在快跑者前一段,则快跑者永远赶不上慢跑者,因为追赶者必须首先跑到被追者的出发点,而当他到达被追者的出发点,慢跑者又向前了一段,又有新的出发点在等着它,有无限个这样的出发点。芝诺当然知道阿基里斯能够捉住海龟,跑步者肯定也能跑到终点。类似阿基里斯追上海龟之类的追赶问题,我们可以用无穷数列的求和,或者简单建立起一个方程组就能算出所需要的时间,那么既然我们都算出了追赶所花的时间,我们还有什么理由说阿基里斯永远也追不上乌龟呢?然而问题出在这里:我们在这里有一个假定,那就是假定阿基里斯最终是追上了乌龟,才求出的那个时间。但是芝诺的悖论的实质在于要求我们证明为何能追上。上面说到无穷个步骤是难以完成。以上初等数学的解决办法,是从结果推往过程的。悖论本身的逻辑并没有错,它之所以与实际相差甚远,在于这个芝诺与我们采取了不同的时间系统。人们习惯于将运动看做时间的连续函数,而芝诺的解释则采取了离散的时间系统。即无论将时间间隔取的再小,整个时间轴仍是由有限

的时间点组成的。换句话说,连续时间是离散时间将时间间隔取为无穷小的极限。其实这归根到底是一个时间的问题。譬如说,阿基里斯速度是10m/s,乌龟速度是1m/s,乌龟在前面100m。实际情况是阿基里斯必然会在100/9秒之后追上乌龟。按照悖论的逻辑,这100/9秒可以无限细分,给我们一种好像永远也过不完的印象。但其实根本不是如此。这就类似于有1秒时间,我们先要过一半即1/2秒,再过一半即1/4秒,再过一半即1/8秒,这样下去我们永远都过不完这1秒,因为无论时间再短也可无限细分。但其实我们真的就永远也过不完这1秒了吗?显然不是。尽管看上去我们要过1/2、1/4、1/8秒等等,好像永远无穷无尽。但其实时间的流动是匀速的,1/2、1/4、1/8秒,时间越来越短,看上去无穷无尽,其实加起来只是个常数而已,也就是1秒。

所以说,整个故事看起来就像一场数学教学中的失败。也许在你的小学数学学习中,你可能对一些隐隐约约的数学问题产生疑问。这就好比我们会利用3无法被10整除产生很多的悖论。然而,对于这个数学问题中的无限话题又对人生有着思考。我们都知道,古希腊的数学与哲学是并行不悖的。很多知名的学者不仅是伟大的数学家,更是伟大的哲学家。而飞箭静止说,则更好的反应了哲学的思考,就像我们本学期开始学习的《马克思主义基本原理概论》,其中费尔巴哈的形而上学,就提到过无限对人类思想的启迪意义。

1.2飞箭静止说

我们可以很容易的拿初高中物理,相对静止与运动来辩驳这项悖论。运动是绝对的,静止是相对的!相对静止是运动的特殊情况。之所以是静止的是因为所选的参照物的速度与研究对象的速度相同(大小和方向相同)。回想我们上学期得《高等数学》,什么是极限?极限的概念是什么?。速度的定义是 v=limΔs/Δt(Δt-〉0)可以这么理解Δt越接近0,Δs就越接近0。当Δt接近于0时(永远不等于0),Δs/Δt就接近一个固定的值(这个值就是该时刻的瞬时速度v)。极限是一个过程,也就是一个变化的过程。而不能简单地认为就是Δt=0。上述错误就是简单的认为Δt=0。而另一方面,运动确实只是许多静止的总和,割裂了时间与空间,运动与静止的联系。只是片面地看到了其中一方面而忽略了另一方面的存在。根据机械运动理论的观点,要描述一个物体的运动。首先是要建立一个参照系,然后才能确定它的状态。如果我们把自己(观察者)当作参考系。这时认为飞箭是运动的。而当认为飞箭静止时,显然参考系选的是飞箭。对于飞箭运动状态的两个描述,都不是在同一个参考系下。再进行比较已经毫无意义。除非能确定这两个参考系的相对运动状态。

所以说,在现在,就我掌握的大学本科未毕业加12年教育来看,我的认知中,越发觉这简直,完全,已乎就是一个彻头彻尾的悖论。用简单的相对运动,运动,参照系来认知,芝若的飞箭静止论狭义来看,其实就是当时“见少识不广”人们对自然科学的朦胧思考。不过说来,也无不否认我的缺陷,无法看清这个悖论深层的意义。

为什么我会谈到这两个悖论?因为他构成了我对数学文化最初的认知。我们继续回到上文提到古希腊数学发展。

本文已影响